EDA of JNJ
Refer to EDA-UNH for more detailed description for each plot.
Basic Time Series Plot
Show the code
# candlestick plot
<- as.data.frame(JNJ)
JNJ_df $Dates <- as.Date(rownames(JNJ_df))
JNJ_df
<- JNJ_df %>% plot_ly(x = ~Dates, type="candlestick",
fig_JNJ open = ~JNJ.Open, close = ~JNJ.Close,
high = ~JNJ.High, low = ~JNJ.Low)
<- fig_JNJ %>%
fig_JNJ layout(title = "Basic Candlestick Chart for Johnson & Johnson")
fig_JNJ
Lag plot
Show the code
<- ts(stock_df$JNJ, start = c(2010,1),end = c(2023,1),
JNJ_ts frequency = 251)
ts_lags(JNJ_ts)
Decomposed times series
Show the code
<- decompose(JNJ_ts,'additive')
decompose_JNJ autoplot(decompose_JNJ)
Autocorrelation in Time Series
Show the code
<- ggAcf(JNJ_ts,100)+ggtitle("ACF Plot for JNJ")
JNJ_acf <- ggPacf(JNJ_ts)+ggtitle("PACF Plot for JNJ")
JNJ_pacf
grid.arrange(JNJ_acf, JNJ_pacf,nrow=2)
Augmented Dickey-Fuller Test
Show the code
::adf.test(JNJ_ts) tseries
Augmented Dickey-Fuller Test
data: JNJ_ts
Dickey-Fuller = -2.4264, Lag order = 14, p-value = 0.3978
alternative hypothesis: stationary
Detrending
Show the code
= lm(JNJ_ts~time(JNJ_ts), na.action=NULL)
fit
= JNJ_ts
y=time(JNJ_ts)
x<-data.frame(x,y)
DD<- ggplot(DD, aes(x, y)) +
ggp geom_line()
<- ggp +
ggp stat_smooth(method = "lm",
formula = y ~ x,
geom = "smooth") +ggtitle("JNJ Stock Price")+ylab("Price")
<-autoplot(resid(fit), main="detrended")
plot1<-autoplot(diff(JNJ_ts), main="first difference")
plot2
grid.arrange(ggp, plot1, plot2,nrow=3)
Don't know how to automatically pick scale for object of type <ts>. Defaulting
to continuous.
Don't know how to automatically pick scale for object of type <ts>. Defaulting
to continuous.
Moving Average Smoothing
Smoothing methods are a family of forecasting methods that average values over multiple periods in order to reduce the noise and uncover patterns in the data. It is useful as a data preparation technique as it can reduce the random variation in the observations and better expose the structure of the underlying causal processes. We call this an m-MA, meaning a moving average of order m.
Show the code
<- autoplot(JNJ_ts, series="Data") +
MA_7 autolayer(ma(JNJ_ts,7), series="7-MA") +
xlab("Year") + ylab("Adjusted Closing Price") +
ggtitle("JNJ Stock Price Trend in (7-days Moving Average)") +
scale_colour_manual(values=c("JNJ_ts"="grey50","7-MA"="red"),
breaks=c("JNJ_ts","7-MA"))
<- autoplot(JNJ_ts, series="Data") +
MA_30 autolayer(ma(JNJ_ts,30), series="30-MA") +
xlab("Year") + ylab("Adjusted Closing Price") +
ggtitle("JNJ Stock Price Trend in (30-days Moving Average)") +
scale_colour_manual(values=c("JNJ_ts"="grey50","30-MA"="red"),
breaks=c("JNJ_ts","30-MA"))
<- autoplot(JNJ_ts, series="Data") +
MA_251 autolayer(ma(JNJ_ts,251), series="251-MA") +
xlab("Year") + ylab("Adjusted Closing Price") +
ggtitle("JNJ Stock Price Trend in (251-days Moving Average)") +
scale_colour_manual(values=c("JNJ_ts"="grey50","251-MA"="red"),
breaks=c("JNJ_ts","251-MA"))
grid.arrange(MA_7, MA_30, MA_251, ncol=1)
The graph above shows the moving average of 7 days, 30 days and 251 days. 251 days was choose because there are around 251 days of stock price data per year. According to the plots, it can be observed that When MA is very large(MA=251), some parts of smoothing line(red) do not fit the real stock price line. While When MA is small(MA=7), the smoothing line(red) fits the real price line. MA-30 greatly fits the real price line. Therefore, MA-30 might be a good parameter for smoothing.